
Project Report

Embedded Linux Sys-
tem Report

Omar Farag Rashed 1061007

Supervised By: Eng. Tasnim Basmaji

Submitted: June 2, 2021

1

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Problem Statement . 5
1.3 Literature Review . 5

2 Design 6
2.1 Requirements Constraints, and Considerations 6
2.2 Design Process . 6

2.2.1 Physical Connections 6
2.2.2 Software Configuration 8
2.2.3 Code . 10

3 Experimental Testing and Results 13
3.1 Results . 13
3.2 Results . 14

4 Conclusion 15
4.1 Summary . 15
4.2 Future Improvements and Takeaways 15
4.3 Impact Statement . 16

List of Figures

1 Wire Connections Required to Establish I2C Connection Be-
tween Raspberry Pi and Arduino UNO 6

2 Wire Connections Required to Connect the Line Follower with
Arduino UNO . 7

3 Image of a Pi Camera Connected to Raspberry Pi 3 8
4 Main Configuration Screen of Raspberry Pi 9
5 Interface Configuration Screen of Raspberry Pi 9
6 Example of License Plate Reading Using Raspberry Pi and Pi

Camera . 13
7 Arduino UNO Outputting ”Need to go left” 14
8 Arduino UNO Outputting ”Need to go right” 14
9 Arduino UNO Outputting ”Going on the right track” 15

2

List of Tables

3

Abstract

In this report I aim to create an embedded system that will con-
trol the robot to go through a parking plot to check if he has paid
Mawaqif’s fee through using computer vision to read the license plate.
To conduct this project I need a Raspberry Pi, Arduino UNO, Pi
Camera, and a Line Follower. The Raspberry pi and the Ardunio
UNO communicated to each other through I2C where the Raspberry
pi will let the Ardunio UNO know when to stop. The Raspberry Pi
will extract the license plate using tesseract Optical Character Recog-
nition then the Ardunio UNO will be able to control the robot using
the reading from the Line follower.

4

1 Introduction

Mawaqif’s staff have a hard time working in this country specially because
of the constant heat during day time, so imagine having a robot that will do
that job for them which is the goal of this project. By making use of both
Raspberry Pi and Arduino UNO I will be able to control both the robot and
detect the car’s license plate.

1.1 Motivation

We hope to help Mawaqif’s staff working out during the heat of the day time
by preventing them from getting illnesses with this project as it can allow
the robot to take over during the day time where the heat is it’s highest and
allow these Mawaqif’s workers to takeover during the night.

1.2 Problem Statement

Since UAE will always have a hot weather because it was built over a desert
people working out doors have to suffer from this heat which can cause sun
burn, exhaustion, and other illnesses, and Mawaqif’s staff face this problem
everyday and due to exhaustion can make mistakes when issuing fines.

1.3 Literature Review

The first paper talks about the development of a hand held embedded system
device that will automatically recognize license plate which is aimed to help
security employees at the entrances by helping them to automatically check
if the vehicle is authorized or not from a provisioned database with a list of
authorized vehicles. The device is centered around the raspberry pi which
works with the help the optical character recognition to detect the license
plate numbers [1].

For the second paper it talks about toll booth robot that was developed
in India that can read the car’s license plate number by converting it to
ASCII characters then check the database for the owner information and
automatically deduct the toll cost and notifying him by a message to the
phone number registered in the database which finally going to open the toll
gate and the car through [2].

5

2 Design

2.1 Requirements Constraints, and Considerations

Requirements:

• Raspberry Pi 4

• Arduino UNO

• Pi Camera

• Line Follower

• Power Bank

• Male to Female Wires

• Microhdmi to hdmi

For this project I made the assumption that the robot will take around 5
seconds to go from one license plate to another.

2.2 Design Process

2.2.1 Physical Connections

Figure 1: Wire Connections Required to Establish I2C Connection Between
Raspberry Pi and Arduino UNO

6

In order to establish I2C communication between the Arduino UNO and the
Raspberry Pi you will need to connect the Analog pin A4 from the Arduino
UNO to the SCL pin of the Raspberry Pi and the Analog pin A5 to the SDA
pin of the Raspberry Pi. After that I need to have them share the same
ground so I will connect the ground pins to each other.

Figure 2: Wire Connections Required to Connect the Line Follower with
Arduino UNO

As shown in the figure 2 you can see that I used three of the fiver available
sensors of the line follower and that is because they require to be connected
to an Analog pin and the Ardunio UNO has only 6 Analog pings and we need
2 of them for the I2C communication. We need to power the Line follower
using the 5V pin and ground it using the ground pin then connect OUT1
with A2 and OUT3 with A1 and finally, OUT5 with A0.

7

Figure 3: Image of a Pi Camera Connected to Raspberry Pi 3

It is really simple to connect the Pi Camera to the Raspberry Pi since
all you have to do is pull the black lid then insert the Pi Camera strip with
golden side facing away from the Ethernet Plug.

2.2.2 Software Configuration

You need to configure the Raspberry Pi in order to make the Pi Camera
Function and the I2C Communication to work.

In order to enter the configuration screen you need to enter the following
command in the terminal:

1 sudo raspi-config

After running that command you will need to enable the following inter-
faces:

8

Figure 4: Main Configuration Screen of Raspberry Pi

Figure 5: Interface Configuration Screen of Raspberry Pi

After enabling both the Pi Camera and I2C Communication as shown in
Figure 5 you will need to run the following command to reboot the Raspberry
Pi and make these changes take effect.

1 reboot

9

2.2.3 Code

Raspberry Pi’s Code:

1 import cv2

2 import pytesseract

3 import imutils

4 from picamera.array import PiRGBArray

5 from picamera import PiCamera

6 from time import sleep

7 from smbus import SMBus

8

9 addr = 0x8

10 bus = SMBus(1)

11 sleep(1)

12

13 camera = PiCamera()

14 camera.resolution=(640,480)

15 rawCapture= PiRGBArray(camera, size=(640, 480))

16 for frame in camera.capture_continuous(rawCapture, format="bgr",

use_video_port=True):

17 image = frame.array

18 cv2.imshow("frame", image)

19 key = cv2.waitKey(1)&0xff

20 sleep(5)

21 bus.write_byte(addr, 0x73)

22 rawCapture.truncate(0)

23 image = imutils.resize(image, width=900)

24 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

25 thresh = cv2.GaussianBlur(gray, (3,3), 0)

26 text = pytesseract.image_to_string(thresh, lang=’eng’,

config=’--oem 2 --psm 6’)

27 words = text.split(" ")

28 for item in words:

29 if(item.isnumeric()):

30 if(len(item) == 2):

31 TwoDigitNumber = item

32 elif (len(item) == 5):

33 FiveDigitNumber = item

34 print(TwoDigitNumber, FiveDigitNumber)

35 cv2.imshow("frame", image)

10

First we set the address for I2C Communication as 8 and initialise the bus
and create a delay of 1 second for the initialisation of the bus then I initialise
the camera and set the resolution to 640x480 (WidthxHeight). After that
we capture the camera in an array and loop through it saving the frame’s
array in a variable called image. Then we show the image we captured in a
window called frame and give it a delay of 5 seconds since we assume thats
the amount it will take to reach from one car to another. After 5 seconds
have passed I will send a byte of the decimal number 73 which represents the
char ’s’ and now for processing the image to increase its accuracy I first resize
the image to higher width and change its colors to gray since that will make
it easier to read the characters in the image then add a blur and finally get
the reading from using the built-in function of pytesseract with the inputs
of the image, the language set to English and setting the used engine as 2
and the text as block. After that I split the text and check each word if it
is numeric and if its length is 2 or 5 then I save it in a variable and finally
display it along with the frame.

Arduino UNO’s Code:

1 #include <Wire.h>

2

3 //Sensor Connection

4 const int left_sensor = A2;

5 const int middle_sensor = A1;

6 const int most_right_sensor = A0;

7 int most_left_sensor_state;

8 int middle_sensor_state;

9 int most_right_sensor_state;

10

11 void setup() {

12 Wire.begin(0x8);

13 Wire.onReceive(receiveEvent);

14 Serial.begin(9600);

15 }

16

17 void receiveEvent(int howMany){

18 while(Wire.available()) {

19 char c = Wire.read();

20 if(c == ’s’){

11

21 Serial.println("Stopping Vehicle for 5 seconds");

22 delay(5000);

23 Serial.println("Starting Vehicle");

24 }

25 }

26 }

27

28 void loop() {

29 most_left_sensor_state = analogRead(sensor1);

30 middle_sensor_state = analogRead(sensor3);

31 most_right_sensor_state = analogRead(sensor5);

32 if(most_left_sensor_state < 500 && most_right_sensor_state > 500){

33 Serial.println("Need to go left");

34

35 } else if (most_left_sensor_state > 500 &&

most_right_sensor_state > 500 && middle_sensor_state < 500){

36 Serial.println("Going on the right track");

37

38 } else if (most_right_sensor_state < 500 &&

most_left_sensor_state > 500){

39 Serial.println("Need to go right");

40 }

41 }

First I point out the pins used and set the address for I2C communi-
cation as 8 and make it when message received through I2C it will trigger
receiveEvent function. The receiveEvent will loop through the message re-
cieved and covert them to a char which if they equal s then it will stop the
vehicle for 5 seconds and start it again. For the loop I analogRead the sensors
from the line follower and the number returned will be from 0 to 1000 with
0 representing that there is a black line under it while 1000 shows that there
is no black line under it. If the most left sensor has black line under it and
the most right doesn’t then it will need to go to the left to correct its path
and same for the opposite. If the middle sensor has black line under it while
other two doesn’t then it means its at the correct path and will not change
its trajectory.

12

3 Experimental Testing and Results

3.1 Results

Figure 6: Example of License Plate Reading Using Raspberry Pi and Pi
Camera

In the Figure 6 you can see that Raspberry Pi was able to detect both the
Category Number and the five digit number from the License plate image
printed on an A4 Paper.

13

3.2 Results

Figure 7: Arduino UNO Outputting ”Need to go left”

In the Figure 7 you can see that Arduino UNO is printing ”Need to go left”
since the most left sensor is only one with black line under it.

Figure 8: Arduino UNO Outputting ”Need to go right”

14

In the Figure 8 you can see that Arduino UNO is printing ”Need to go
right” since the right sensor is only one with black line under it.

Figure 9: Arduino UNO Outputting ”Going on the right track”

In the Figure 9 you can see that Arduino UNO is printing ”Going on the
right track” since the middle sensor is only one with black line under it.

4 Conclusion

4.1 Summary

In Summery I was able to detect the license plate numbers and communicate
with Arduino UNO to control the vehicle and check if the vehicle moving on
the correct path using a black line on the ground and line follower sensor.

4.2 Future Improvements and Takeaways

It is possible to improve this Embedded System by making it automatically
detect license plates instead of assuming that the cars are 5 seconds apart.

15

4.3 Impact Statement

We hope that by implementing this project, we will be able to protect
Mawaqif’s employees who work out during the day from becoming ill, as
the robot will be able to take over during the day when the heat is at its
peak, and these Mawaqif employees will be able to take over at night when
the heat is at its lowest.

References

[1] J. Raju, C. V. Raghu, S. N. George and T. S. Bindiya, ”Development of
a Hand held device for Automatic License Plate Recognition,” in The
Institute of Electrical and Electronics Engineers, Inc. (IEEE) Conference
Proceedings, Piscataway, 2020.

[2] M. M. Desai and J. J. Patoliya, ”Smart toll collection system using em-
bedded Linux environment,” in The Institute of Electrical and Electron-
ics Engineers, Inc. (IEEE) Conference Proceedings, Piscataway, 2017.

16

	Introduction
	Motivation
	Problem Statement
	Literature Review

	Design
	Requirements Constraints, and Considerations
	Design Process
	Physical Connections
	Software Configuration
	Code

	Experimental Testing and Results
	Results
	Results

	Conclusion
	Summary
	Future Improvements and Takeaways
	Impact Statement

